Next Generation Aura OMI NO₂ & SO₂ products

N Krotkov, K. Yang, P.K. Bhartia, J. Gleason, E. Celarier, E. Bucsela, L. Lamsal

A-Train Symposium

New Orleans, October 26 2010

The measurement of both SO₂ and NO₂ is an essential component of the Aura mission

OMI operational SO₂ and NO₂ data

- 2 different OMI NO₂ products (KNMI and GSFC)
- Current SO₂ and NO₂ algorithms are not consistent
- SO₂ height not provided
- OMI NO₂ and SO₂ data (except volcanic) are only used for low cloud radiance fractions (CRF < 0.2-0.3)
- Users proposed improvements (e.g. Lee et al., 2009 for SO₂; Lamsal et al., for NO₂].
- Averaging Kernel information is not operationally provided

Re-processing Goals:

- Significantly improve the OMI Level-2 SO₂ and NO₂ data records by exploiting geophysical information contained in OMI hyperspectral measurements and other high spatial resolution cloud and aerosol data from A-train sensors;
- Provide critical information (e.g. Averaging Kernels) for evaluation of chemistry-transport models, for data assimilation, and to impose top-down constraints on the SO₂/NO₂ column ratios that characterize anthropogenic emission sources;
- Develop enhanced Level-3 SO₂ and NO₂ data products to serve the interests of a broader atmospheric composition and air quality user community;
- Continue and improve our long-term explosive volcanic SO₂ climate data record that started with TOMS in 1978, continues to present with OMI, and will continue with NPP/OMPS, with improved explosive volcanic SO₂ emission height estimates;
- Continue and improve near-real-time volcanic SO2 and ash detection for aviation decision support

Measurement of trace gas column N: DOAS vs. Direct Fitting

DOAS: $\ln I_{TOA}$ vs. σ_a

$$\frac{\partial \ln I_{TOA}(N,z)}{\partial \sigma_a} = -N m = \mathbf{SCD}$$

Direct Fitting:

 $\ln I_{TOA}$ vs. N Weighting Function

$$\left. \frac{\partial \ln I_{TOA}(N,z)}{\partial N} \right|_{N=0} = -\sigma_a \, m$$

m is the air mass factor (AMF).

$$m = \left(1 - \frac{I_a(z)}{I_{TOA}(N, z)}\right) m_g$$

$$I_{TOA}(N,z) = I_a(z) + I_b(z)e^{-m_g \tau_a}$$

Direct Fitting for O₃ and SO₂

• Minimize the difference between measurements and model simulation by adjusting retrieval parameters (O₃ and SO₂ columns, and Ring and reflectance parameters) iteratively

$$\ln I_{m} - \ln I_{TOA} = \sum_{p=1}^{n} \frac{\partial \ln I_{TOA}}{\partial X_{p}} \Big|_{X_{p} = X_{p_{i}}} \Delta X_{p} + p_{rrs} \sigma^{rrs}$$

$$+ \left(\Delta F_{c} + \sum_{k=1}^{2} c_{k} (\lambda - \lambda_{0})^{k} \right) \frac{\partial \ln I_{TOA}}{\partial F_{c}} \Big|_{F_{c} = F_{c i}} + \varepsilon$$

• Aerosol Index: spectral slope c₁, which quantifies the spectral contrast of the apparent reflectance (i.e., the combined effect of ground reflection and back-scattering by clouds/aerosols) of an IFOV at the lower atmospheric boundary

Improvement in Accounting for Profile Shape Effect

- BUV measurements contain information of SO₂ plume height in addition to its column amount
- This information can be extracted from hyperspectral BUV measurements.
 - For SO₂ in the troposphere and up-to the lower stratosphere, spectral measurements in 300 330 nm are needed to extract the height information.
 - For large SO₂ column, this range can be narrowed to 310 330 nm.
- Height information needed for accurate quantification of column amount

Eyjafjallajökull Plumes

Background noise is reduced with the new DSF

More sensitive OMI Direct Spectral Fit SO₂ retrievals

Dual sounding O₃-SO₂ technique,

[G. Morris et al 2010]

Figure 3. The dual O₃/SO₂ sonde payload. From left to right are the Vaisala RS80-1 diosonde, the unfiltered ECC ozonesonde, and the SO₂ filtered ECC ozonesonde usin EnSci CrO₃ filter.

OMI operational NO₂ data

Standard (GSFC) and NRT (KNMI) NO₂ products:

Tropospheric and Stratospheric vertical column densities (VCD)

assuming climatological (GSFC) and forecast (KNMI) vertical profiles

VCD: $10^{15} - 10^{17}$ [molecules/cm2]

OMI operational NO₂ algorithm

NO₂ algorithm improvements:

- Better separation of stratospheric and tropospheric NO₂ columns
- Using Monthly GMI profiles
- Better cloud/aerosol corrections
- Better surface corrections
- Provide consistent Averaging Kernels
- instrumental characteristics while maintaining a highquality data products.

Annual mean profile responsible for seasonal bias

Averaging kernel definition

$$S = \int d\mathbf{p} \ \mu(\mathbf{p}) \ \rho(\mathbf{p})$$
 = slant column [Palmer et al. [2001], $V = \int d\mathbf{p} \ \rho(\mathbf{p})$ = vertical column

where

 μ (p) = scattering weights (aka Jacobians, dAMFs, etc) (a priori functions of pressure p; also of viewing geometry, albedo, clouds, etc)

 ρ (p) = <u>trace-gas mixing ratios</u> (a priori functions of pressure)

If M = S/V is the air mass factor, then define

$$A(p) \equiv \mu(p) / M = \underline{averaging kernel} [Eskes & Boersma, 2003]$$

A(p) shows retrieval sensitivity to the trace gas at a given pressure level.

To compare an OMI retrieved vertical column V_{OMI} to an independent set of modeled or measured mixing ratios $\rho'(p)$, compute the ratio of V_{OMI} to V_{AK} , where

$$\mathbf{V}_{AK} = \int d\mathbf{p} \, \mathbf{A}(\mathbf{p}) \, \boldsymbol{\rho}'(\mathbf{p})$$

The ratio V_{OMI}/V_{AK} will be independent of the *a priori* mixing ratio profile $\rho(p)$.

Averaging kernel examples: Clear sky

No OMI CldFrac filter

Aura/OMI - 08/08/2008 03:37-06:54 UT

Average Simulated SO2_Column(Dobson_Unit above the surface layer on Aug 8, 2008

OMI CldFrac < 0.5

Aura/OMI - 08/08/2008 03:37-06:54 UT

OMI CldFrac < 0.3

(used in monthly OMI maps)

- -Satellite data should provide better corrections for partly cloudy scenes: filtering cloud pixels removes useful information;
- A-priori information is needed on cloud effective height, aerosols and SO₂ profile shapes
- Model fields should be re-sampled consistently with satellite measurements (applying the same cloud filter)

Implementation

- New version of the standard NO₂ data January 2011
 - Including AK
 - Monthly NO2 profiles
 - Other improvements see Poster by Ed Celarier
- Releasing level 3 SO₂ data January 2011
- Next generation NO2 and SO2 products 2012
 ROSES Aura ST proposal pending